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ABSTRACT 
Asymptotic formulas with remainder estimates are derived for spectral func- 
tions of general elliptic operators. The estimates are based on asymptotic 
expansion of resolvent kernels in the complex plane. 

1. Introduction. Let t2 be an open set in real space R n with generic point 

x = (xl , . . . ,  xn). We denote by Hm(f~), m > 0 an integer, the subclass of functions 

u e L2(~) with (distribution) derivatives D~u E L2(~) for all I ~ l <  m. Here and 

in the following ~ = (cq, . . . , ~ )  is a multi-index of length -- ~1 + . .  + ~n and 

o • = o ? . . .  D:n, o ~  = - i ~ - ; , ,  i = 4 - 1. 

We denote by H t°c" (f~) the class of  functions defined on tq and belonging locally 

to H m. In Hm(~ ) we introduce the norm:  

(I .1)  ][Ullm'fl :  [ ffl ,~[~<=m (F~)IDOeu[2dx] 1/2 
where dx is the Lebesgue measure and the binomial coefficients 

are introduced for convenience. Under this norm I-Im(~ ) is a Hilbert space. 
Let p(x) be a C ~ positive function on f~. We denote by dox the measure p(x)dx 

and by ( , )o the scalar product:  

(f ,g)p = f f(x)g(x)dax (1.2) 
J~  
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We denote by L2,p(f~) the Hilbert space which is the completion of C~°(fl) 
(class of infinitely differentiable functions with compact support in fl) under the 
norm (f,f)~/2. 

Let 

(1.3) A = A(x,D) = ]E a,(x)D ~ 
I~l_~m 

be a linear differential operator of order m with C ~ coefficients in f~. We denote 
its principal part by A' = A'(x, D). We assume that A is a positive elliptic operator 
and that it is p-formally self-adjoint. That is we assume that 

A'(x, ¢) = E a~(x)4" > O, 4" = 4]'"" 4,7 ~, 
[~1 =m 

for all real 4= (¢~ , . . . , 4 , )~0  and xEf~, and that (Au,v)p=(u,Av)p for all 
u, v e C~°(t~). 

We denote by ~ a self-adjoint realization of A in Lz,p(f~). That is, X is a self- 
adjoint operator in the Hilbert space Lz.p(f~) with domain of definition ~2  such 
that any u e ~,~ is a solution in the distribution sense of the differential equation: 

(1.4) A(x, D)u = Xu 

By well known regularity results for weak solutions of elliptic equations (e.g. [1]) 
it follows from (1.4) that ~,~ = Htm°c'(f~). More generally, since ,,I k is a realization 
of Ak: 

IOC. (1.5) ~ = Hkm (tq) for k = 1,2, .... 

Assume that the self-adjoint realization X is bounded from below and let {Et} 
be its spectral resolution (normalized by left continuity): 

It is (essentially) well known that Et is an integral operation: 

Etf = f a  e(t; x,y)f(y)dpy, feL2. , ( f l ) ,  

with a C ~ Carleman type kernel e(t; x,y)  called the spectral function of 
(see G~trding [9] and section 2 of this paper). In particular e(t; x,x)  is a real 
non-negative non-decreasing function of t. 

The problem:of the asymptotic behavior of spectral functions was first investi- 
gated by Carleman [7] for a class of second order elliptic operators. In more 
recent years the problem was studied by many authors for more general operators 
(e.g. [14; 15] [8; 9; 10] [5,6], [12], [4], [2]). In particular G~rding [8] proved 
that in the general situation discussed above, when p = 1: 
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e(t; x ,x )  -- c(x)t n/m= o(tnl=) as t ~  + oo, 

c(x) = (2r0 -n f d~. 
J A'(x,~)<I 

(1.6) 

GriMing has also shown that when A has constant coefficients then the remainder 
term o(t "/") in (1.6) can be replaced by the term: O(t (n- 1)i,,). 

For elliptic operators with variable coefficients a remainder estimate in the 
asymptotic formula (1.6) is known in the literature only for a class of second 
order operators. Avakumovic [-3] proved that for the Laplace-Beltrami operator 
on a compact Riemannian manifold the remainder term o(t nlz) in (1.6) can be 
replaced by O(t (~- 1)/2) (this result was proved explicitly only for n = 3). Recently 
S. Agmon proved (unpublished) that for elliptic operators of any order the fol- 
lowing estimate for the remainder term in (1.6) holds: 

(1.7) e(t; x , x )  - c(x)t n/m = O(t(n-O)lm), t -'* + o0, 

where 0 is any number < ½ in the general case and 0 any number < ~ if the principal 
part A' has constant coefficients. 

The main purpose of this paper is to improve further the last mentioned re- 
mainder estimate. We shall prove that (1.7) holds with any 0 < ½ in the general 
case and any 0 < 1 if A' has constant coefficients (actually we shall prove a some- 
what more general result, see Theorem 3.2). In this connection we mention that a 
short time after the derivation of our results we were informed by L. H6rmander 
that he has also obtained very recently the same remainder estimates for the 
spectral function. His method, however, seems to be different from the method 
employed by us. About our method we shall say here only that it uses a procedure 
of estimating kernels introduced in [2] to derive a fine asymptotic expansion 
theorem for resolvent kernels of elliptic operators. The proof of this expansion 
theorem (Theorem 3.1 and the more general Theorem 6.2) takes up most 
of this paper. Once this result is established the remainder estimates for 
spectral functions follow easily with the aid of a tauberian theorem due to 
Malliavin 1-13]. 

In another paper S. Agmon will use a modified approach to derive various 
extensions of the results of this paper. In particular, similar remainder estimates 
will be proved for the asymptotic distribution formula of eigenvalues. Remainder 
estimates will also be proved for spectral matrix functions corresponding to a 
self-adjoint realization of an elliptic system of differential operators. The self- 
adjoint realization will not be assumed to be semi-bounded. 

In conclusion we wish to thank L. H6rmander for informing us about his 
results and for acquainting us with his recent, as yet unpublished, work 1-11] on 
spectral functions. 
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2. Certain integral operators. We shall have to deal with bounded linear 
operators T in Lz(f~) such that range of T is contained in Hs(f~) for some m > 0. 
By the closed graph theorem Tis also bounded when considered as a linear trans- 
formation from Lz(O) into Hj(f~), 0 < j =< m. The norm of T when considered as 
an operator: L 2 ~ Hj will be denoted by: 

(2.1) II TIIj = l] z l lJ , .  -- sup II zf[li.- 
f ~ Lz(fl) ~ " 

We state now one of the principal results of [2] (Theorem 3.1 of [2]) which 
will also play a basic role in this paper. In this connection recall that an open 
set f~ is said to possess the cone property if each point x ~ f~ is the vertex of a 
spherical cone of a fixed height and opening contained in fL 

THEOREM 2.1. Let T be a bounded linear operator in L~(~), ~ an open set in 
R" possessing the cone property. Suppose that the range of T and that the range 
of its adjoint T* are contained in Hm(~) for some m > n. Then T is an integral 
operator, 

fa  K(x, y)f(y) dy, f ~ L2(f~ ), Tf 

with a continuous and bounded kernel K(x,y) satisfying 

<2.2) Ig<x,y>l <-_  o<11 rll .  + H T* II.)"/mll r Jig-'/" 
where to is a constant depending only on m,n and on the dimensions of the 
cone in the cone property of ~. 

Using the last theorem one can easily prove the existence of a continuous 
kernel in the more general situation when T is a bounded linear operator in 
L2,p(f~) such that the range of T and the range of T* are contained in 
H~C(f~), m > n. To see this let {f~j}, j = 1,2, ..., be a sequence of open bounded 
sets possessing the cone property, f i~cf~ ,  f ~ j c ~ j +  1 and u j f ~ j = ~  Let 
Jj: L2,o(~)~L2,o(f~i) be the restriction operator restricting f eL2 ,p (~ ) to  ~j. 
Its adjoint J j*.: Lz,p(f~i) ~ Lz,p(f~) is an extension operator extending f e  Lz,p(f~ J) 
as zero in f~ - f~j. Let: Tj = JjTJ*. It is clear that T/can be considered as a bounded 
linear operator in L2(f~j) and that as such it verifies all the conditions of Theorem 
2.1.Applying the theorem it follows that Tj is an integral operator with a continuous 
kernel Kj(x, y) on f~j. x f~j. It is easy to see that K~(x, y) = Kj(x, y) on f~i x £~ 
for any i < j .  Hence the kernel K(x,y) defined by p(y)K(x,y)= Kj(x,y) in 
f~j x f~j for j = 1, 2,.. . ,  is a well defined kernel on f~ x f~ such that 

(2.3) T f =  f K(x,y)f(y)day 
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for all f e  L2,p(f0 with compact support in f~. Finally (2.3) actually holds for all 
f e  L2.p(f~) since K is a Carleman kernel with respect to the measure dpy (indeed 
by Sobolev's inclusion relations: f ~  (TJ)(x) is a bounded linear functional on 
L2,p(f~) for each fixed x which implies that K(x, ")~L2,p(f~)). Thus we have 
proved: 

THEOREI~ 2.1. bis. Let T be a bounded linear operator in L2,p(f])such that 
range T and range T* are contained in H2C'(f~) for some m > dimfL Then T 
is an integral operator of the form (2.3) with continuous Carleman kernel 
K(x,y). 

As in the introduction we consider now a self-adjoint operator ,,~ in L2,p(~ ) 
which is a realization of  a p-formally selfadjoint elliptic differential operator A 
of order m. Let Rz = (A - 2)-  1 be the resolvent of  X defined for every complex 2 
not in the spectrum of X. Using (1.5), we have: 

range(R~) = range (R*) = ~ ~ H~C'(f~). 

Hence, if m > n, it follows from Theorem 2.1 bis. that Rz is an integral operator: 

= fn Ra(x, y)f(y) Raf dpy, 

with a continuous Carleman kernel R~(x,y). We shall refer to Rx(x,y) as the 
resolvent kernel of .~. 

Next assume the ,~ is bounded from below but impose no restriction on m. 
Let {Et} be the spectral resolution of ,~. For any fixed 2 not in spectrum ,,~ and 
k = 1,2, . . . ,  we write: 

E t = R x  k S t ,x ,k  (2.4) 

where 

St,~,~ = [ (s - 2) d s 
# . - -  <3O 

is a bounded operator. As before, using (1.5): 

lOC. (2.5) range (R~ k) = -@~,, c Hk, . (f~). 

From (2.4) and (2.5) it follows that 

range( ,) 
j = l  

Hence by Theorem 2.1 bis. Et is an integral operator with a continuous (actually 
C °°) and bounded kernel e(t; x, y). This proves the existence of the spectral function 
of  2 
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Suppose that X is positive and that m > n. In this case both the resolvent kernel 
Rx(x,y) and the spectral function e(t; x,y) exist. The following relation holds: 

(2.6) R~(x,y) = (t - 2)-1de(t; x,y) 

where the Stieltjes integral converges absolutely. Formula (2.6) is (essentially) 
well known (see [10], [4]). We note that a simple proof of (2.6) can be given with 
the aid of Theorem 2.1. Without giving complete details we shall sketch the proof. 
Choose a sequence (ON(t)} of  step functions on t >_- 0, each vanishing for t _~ tN suf- 
ficiently large and satisfying: 

(2.7) [¢btc(t)--(t--2)-l l<N-l,  l tb~( t ) - - ( t - -2) - l l<C(l  +t)  -1 

for t ~ 0, C a suitable constant independent of N. Put: 

= f :  [(t -- 2)- 1 _ ON(t)]dEt. (2.8) T,, 

Clearly TN is an integral operator with a kernel 

(2.9) KN(x, y) = Ra(x, y) - f :  ~ ( t )  de(t; x, y). 

Choose any rio c c ri, rio possessing the cone property, and let 

Jo : L2,p(ri) ~ L2,p(rio) 

be the restriction operator from f~ to D 0. Its adjoint J~': L2,p(rio)~ L2,p(ri) is an 
extension operator. Set: TO= JoTNJ *. Then T ° which is a bounded operator in 
L2,p(rio) can also be considered as a bounded operator in L2(rio). Considered as 
such it satisfies the conditions of Theorem 2.1. Some simple computations (using 
(2.8) and (2.7)) show that 

(2.10) II T° Iio,°o = O(N-1), II : I1-,Oo = O(1), 

II(z°)* Ilm,flo = O(1) as N ~ oo. 

Applying the estimate (2.2) to the kernel p(y)KN(x, y) of T ° (on rio x rio) it follows 
from (2.10) that 

(2.11) KN(x,y) = O(N -l+":m) = o(1) as N ~  0% 

uniformly on rio x rio. From (2.11), (2.9) and (2.7) the representation formula 
(2.6) follows easily. In particular the absolute convergence of (2.6) for x = y 
follows in this way by taking 2 = - 1 and choosing ON > 0, using the fact that 
e(t;x,x) is a non-decreasing function of t. The absolute convergence of  (2.6) 
for x ¢ y follows from that for x = y using the following easily established esti- 
mate for the total variation of e(t; x, y) on any finite interval a < t < b (see [4]): 
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var e(t; x,y) < [var e(t; x,x)" var e(t; y,y)] 1/2. 

3. The main theorems. The key result of our paper is the following asymptotic 
expansion theorem for resolvent kernels of elliptic operators. 

THEORE~Ct 3.1. Let ,~ be a positive self-adjoint operator in L2,p(f~) which is 
the realization of a p-formally self-adjoint (positive) elliptic differential operator: 
A(x,D)= ~,l~l~_ma~(x)D~ of order m > n = d i m  ~. For each x~f~ define O(x) 
as follows: O(x)= 1 if 

(3.1) ~ [a , (y ) -a , (x ) [  = O(ly-xl') as y ~ x  
lal  = m  

for all integers p. Otherwise O(x) = p/(p + 1) where p > 1 is the largest integer 
for which (3.1) holds. Let Ra(x, y) be the resolvent kernel of A. Denote by d(2) 
the distance of ~ from the positive axis (d(,~) = 141 if __< 0, = [ I m  2[ 
if Re 2 > 0). Then Rx(x, x) possesses an asymptotic expansion of the form: 

(3.2) R~(x,x) ~ ( - 2) "/m-1 ~ cj(x)( - 2) -jIm 
J=o 

valid for 2--, oo in the region: 141 _-> 1, _>__ where 8 is any 
given positive number, uniformly in x in every compact subset of fL That is, 
for any integer N >- 1 : 

N--1  

(3.2)' 1( - ;t) 1-"/mRx(x,x ) - Y_, %(x)( - ;O-Jim I < Const. I;~ I -u/m 
j=O 

for [h I >__ 1, d(Z)>__lzl where the constant in (3.2)' depends on N 
and e but is independent of x for x in any compact subset of fL In these formulas 
( - 2) -j/m stands for the branch of the power which is positive on the negative 
axis while cj(x) are certain C°° functions on ~ depending only on the differential 
operator A. In particular: 

(3.3) Co(X) = (2n)-"p(x) -x f~,, [A'(x, ~) + 1]-1 d~. 

Before we proceed with the rather long proof of Theorem 3.1 (we shall actually 
prove a more general result) we shall show how this theorem, when combined with 
tauberian theorem of Malliavin [13], yields the estimates for the remainder in the 
asymptotic formula for the spectral function which were mentioned in the in- 
troduction. A very simple proof of Malliavin's theorem is due to Pleijel [16-1 
who also gave a slight extension of the theorem. It is the following: 

THEOREM (MALLIA¥IN). Let (r(t) be a non-decreasing function for t >-0 
such that S~(1 + t)-~dtr(t) < + oo. Suppose that 
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. ~ o  (t - - Co( - 2 ¢  = o(]  I p) 2)- ida(t) 2 

as 2--, oo in the complex plane along the curve: IIm2[ = 12 5 Re2 > 0, where 
- l < fl < a < O, O < y < l; c o some non-negative constant. Then: 

(3.4) tr(t) - s in , (a  + 1) 1 , ( a  + 1) c°t~+ + O(t~+ ~) + O(tp+l) 

as t ~ + o o .  
We shall now prove the following result. 

THEOREM 3.2. Let .~ be a self-adjoint bounded from below operator in L2.p(f~) 
which is the realization of a p-formally self-adjoint elliptic differential operator 
A(x,D) of  order m. Let e(t; x ,y)  be the spectral function of.4. Then: 

e(t; x,x)- [P(X)-'(2")-" L,(x,o<td~ ] t"/m 
(3.5) 

= 0 (t (n-O(x))lm+r) 

as t --* + oo for any ~ > O, uniformly in x in any compact subset of f~, where 
O(x) is the function defined in Theorem 3.1 (1/2 __< O(x)< 1). In particular 
(3.5) holds with O(x) replaced by 1/2 in the general case and with O(x) = 1 if 
A'  has constant coefficients. 

Proof, Without loss of generality we may assume that X is positive. Suppose 
first that m > n. Let R~(x, y) be the resolvent kernel of A. By the representation 
formula (2.6) we have: 

Ra(x,x) = f o  (t - 2)-1de(t; x ,x ) .  

Applying Theorem 3.1, using only the first term in the asymptotic expansion (3.2), 
we have 

(3.6) R~(x, x) - Co(X) ( - 2) ~/m- a = O( 12 ]("- 1)/m- a) 

as ) . ~  along the curve IIm21=12[ Re 4__> 1, for any e > 0 .  
We are now in a position to apply Malliavin's tauberian theorem to a(t) 
= e(t; x ,x)  (a non-decreasing function) with a = n / m -  1, fl = ( n -  1 ) / m -  1 
and y = 1 -  (O(x))/m + e. From (3.4) it follows that 

sin(n, Im) tnlm 
(3.7) e(t; x ,x)  =. n , / m  Co(X) + O(t("-°(x))/m+~). 

By checking the constants in Pleijel's proof of Malliavin's theorem [16] one also 
finds (since the O estimate in (3.6) is uniform in x in any compact subset of  f~) 
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that the O estimate in (3.7) is uniform in x in any compact subset of f~. A simple 
computation (using (3.3)) shows that the coefficient of t */m in (3.7) is the same as 
the coefficient of t n/m in (3.5). This proves the theorem for m > n. 

Suppose now that m < n. Choose an integer k > n/m and consider the spectral 
function ek(t ,  x,y)  ofX k. Clearly, ek(t; x ,y)  = e(t l /k;  x,y). Moreover, Xkis a self- 
adjoint realization of .~k, an elliptic differential operator of order k m >  n. 
Hence it follows from the special case of the theorem just proved (noting that the 
function O(x) is independent of k) that 

(3.8) e(tl/k; X , X ) -  [p(x)-l(270 -" f d~]t "/~r" 
L JA'tx,~)k<l J 

= O(t(,-"(x)~l ~,.+~ ) 

uniformly in x in any compact subset of f~. Replacing t I/kby t in (3.8) we obtain 
(3.5) and complete the proof. 

The remainder of the paper is devoted to the proof of a general asymptotic 
formula for resolvent kernels containing Theorem 3.1 as a special case. 

4. Preliminary results on fundamental solutions and related kernels. In this 
section we consider integral operators acting of functions on R". We denote by 
Hoo = H~(R") the class of functions u ~C~(R ") such that D'u ~L2(R") for 
I c t] >__ 0. By C,(R") we denote the class of functions u ~ C~(R ") such that u and 
all its derivatives are bounded on R n. Let s be a real number. The s-norm of 
u e Hoo is defined in the usual way: 

(4.1) Ilull  = f. .  (1 + 1 12) 1 ( )12d¢ 

Here and in the following /~(~) stands for the Fourier transform: 

a(¢) =(27r) -":~ fa ,  u(x)e 

Let A(D) be a positive elliptic differential operator with constant coefficients 
of order m and with no lower order terms. It is well known that A(D) has a unique 
self-adjoint realization in L2(R") which we shall denote by A. The operator .~ 
is positive and its domain of definition is H,,(R"). Let F~ = ( . 4 - 2 ) - 1  be the 
resolvent of A defined for any complex 2 not contained in the non-negative axis 
and denote by F~ its j th power (j > 1). As before we denote by d(2) the distance 
of 2 from the positive axis. 

LV_MMA 4.1. The operator F,  S defines a one to one linear map: H®---,H~. 
For any two real numbers s, t with s <- t <- s + jm  the following inequality holds: 

(4.2) II F TII,z I IIf[l  
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for f ~ H~ and 14[ > 1 where T is the ellipticity constant: 

(1 + I¢1') *2 
(4.3) ~ = sup ~,~ 1 + A ( O  

For t = s the constant in (4.2) can be replaced by 1. 

Proof. By Fourier transformation: 

.~(e) 
(4.4) ( /~3) ( 0  = (A(0 - 4)," 

which implies that Fa t yields a one to-one-map: H~ -~ Hoo. From (4.4) it follows 
further that 

I:(¢)1 ~ ,. 
(4.5) I I r / f l l ,  ~ -- f . .  la(23-_-~leP + lelb 'de 

= L  I/(e)12o + lel~)' (1 + lel.),-~ 
. IA(e)- 41. ,  de <= c?ll fll~ 

where 

(1 + l e 12) ' -"  
C ~ =  sup 

~ l a ( e ) -  21,, 
Clearly C~ = d(2) - j  for t = s. Using the estimate ]A(e) - 41 >- d(2) we have for 

s <  t<= s + j m ,  141>= 1: 

(1 + l e 12) ' -"  < [~,(1 +a (~ ) ) ]  2('-s~/" 
la(¢)- 21~, = IA(e)- 212' 

~,(1 + A(O) I z('-*):=. 
- ~G) -_~  I 

Hence 

1 

I A (O  - 212,-2<,-,): ,n 

l 2+11'('-"/'d(2)-2s+~'-"/" < "e ' ( ' - ' ) / "  1 + A ( O - ~  

-<__ (3~12 I)'"-~:md(2) - ' '  

c~ __< (3r)s[21 c'-'~:" d(2) - j  for 121 > 1, 

and combining this estimate with (4.5) we obtain the desired inequality (4.2). 
Suppose now that mj > n. It follows from (4.4) that the operator F I is an 

integral (convolution) operator with a continuous and bounded kernel FI (x, y) 
= Fx(x - y, 0) given by 
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(4.6) Fai(x, y) = (270 - " f ~ ,  
e f f X - y )  " 

Moreover the kernel (4.6) has continuous bounded derivations up to the order 
mj - n - 1 on R" x R". In particular for y = x it follows by a straightforward 
computation that for ] ~] < mj - n - 1: 

(4.7) (D,,~Fxl)(x, x)  = (Dx'FxJ)(o, O) 

/ -  

= ( _ ~,)(.+l-o/,.-J. (2~)-" :R/, (A(0 + 1)J d~, 

where ( -  2) {"+l'l)m-s is the analytic branch of the power in the complex plane 
cut along the positive axis which is positive on the negative axis. 

We consider now an operator Sa of the form: 

(4.8) Sa = Bk+ l(X, D) Fai~Bk(x, D) Fx j~- '  ... F / ' B I ( x  , D) 

where the B, (x ,D)  are differential operators of  orders l~ > 0 ,  v = 1 , . . . , k +  1, 
with coefficients belonging to C , (R0 .  We set: 

k+l k 
l =  ~ l , ,  j =  E j , .  

v = l  v = l  

It is well known that a differential operator B, of the above kind defines a bounded 
linear transformation: H~ ~ H~-l.. for every real s. This follows from the easily 
established estimate: 

(4.9) 

where Cs,~ is a constant depending only on s, Iv, n and on a common bound for 
the coefficients of B v and their derivatives up to a certain order N = N(s,  Iv, n). 

From the properties of the operators By and F~ j it is thus clear that Sa which is a 
well defined linear operator: H~o ~H~o is (after completion) a bounded linear 
operator: H, -* Ht for any s, t such that t < s + mj  - I. 

By an alternate application of(4.9) and Lemma 4.1 to the factors of Sx it is easy 
to see that the following estimates hold for s - l < t <_ s + mj  - l: 

(4.10) [Is fll, 

where T is the eUipticity constant (4.3) and C is a constant depending only on 
j ,  l, m, n and on the B, (here and in the following when we say that a constant 
depends on {B,} we mean that it depends on a common bound for the coefficients 
of {B,} and their derivatives up to a certain order N = N ( j ,  l, m, n)). Indeed it 
suffices to verify (4.10) for the extreme values t = s - l and t = s - 1 + mj;  the 
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result for an intermediate t will then follow from the well known interpolation 
inequality: 

II u 11, <-- (IE u 11.),,2-,,,(,2-,,,(11 u t[.) ̀ ,-,,,,`,~-,,,, t, < t  < t2. 

Now, the estimate (4.10) for t = s - l + mj follows by considering each factor 
F j  * of Sx as a bounded linear operator: H, o H,+mjv with norm estimated in 
Lemma 4.1: 

(4.11) I[ ~ : l l ,÷- ,v  < (3~) ;v IIG" = \ d(~) ] 

Thus, if C denotes a generic constant depending only on the B~ and on j ,  l, m, n 
we have by (4.9) and (4.11): 

J l  2 I J l [ s - - l + l k + l + m j  [[nk+lF]~n~...FX Blf[[,_t+,,j < CI IF~kBk . . .FJ 'n  ,: 

J k  . 

< C(3?)ik I] Bk "'" FJ ~ Blf]l ,-(t-tk+,)+,tj-j~ , 

=< ... =< c(3~)'llf[l,. 

Similarly the estimate (4.10) for t = s -  I follows considering this time each 
factor F~ ~ of S~ as a bounded linear operator: H, ~ H, with norm d(;0 - jr .  

From now on we assume that mj - l > 0 and consider Sx as a bounded linear 
operator: L2(R ~) ~ L2(R"). It is clear that Sa* the adjoint of Sx in L2(R"), is an 
operator of the same type: 

S* B*F~ J~ v J ~ *  ~--- " "  .t" ~ JJk + l 

where B* denotes the formal adjoint of B~. We have: 

TI-mOREM 4.1. Suppose that mj - l > n. Then Sx is an integral operator 
with a continuous bounded kernel S~(x,y) on R ~ x  R ~, possessing continuous 

bounded derivatives up to the order m j -  l -  n -  1, satisfying the following 

estimate: 

(4.12) Is~(x,y)l < ~Co I~l<"+''" Ixl > 1, 
= d(2)l ' = 

where y is the ellipticity constant and Co is a constant depending only on the B, 

and on j , l , m , n .  

Proof. Set m ' =  m j -  I. By the preceding remarks S~ is a bounded linear 
operator in L2(R") having its range in Hr,,(R"). Similarly, range (S*) ¢ H,,,(R"). 
Hence, since m' > n it follows from Theorem 2.1 that S~ is an integral operator 
with a continuous and bounded kernel. Moreover, using (4.10) we obtain for the 
zero and m' norms of S~ and S* (def. (2.1)) the estimates: 
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ils,[10 <(37)J cl41 '/" (141~ J, d ( - - ~ ,  II s~ II,. <(37) j C ~d(2)] 

II s: 11., < (3~)~ c [1413 ' = \d(4)I' 141>1, 

with a constant C depending only on the By and on j,  l, m, n. Applying now the 
inequality (2.2) to the kernel S~(x,y) of S~, using (4.13), we find: 

Is~(x,y)l <= Const.(l[s~llm,+ I[sa I[°,)°"'IIs~[I~ -n'm' 

< r~Co 141 (~+')/" 
d(4)J ' 

which is the estimate (4.12). Finally, to show that Sz(x,y) is continuously dif- 
ferentiable up to the order mj - l - n - 1, consider the operator: S~ 'a = D~SzD a 
for any multi-indices a, fl with ]~ I + l a I__< mj - l -  n - 1. One checks readily 
that S~ 'a is a bounded linear operator in L2(R") which satisfies the conditions 
of  Theorem 2.1. Hence, S~ 'a is an integral operator with a continuous bounded 
kernel S]'a(x, y). Now from the definition of S~ 'a it follows that in the distribution 
sense: 

S~'P(x,y) = ( - 1)1#1D:OPrSz(x,y), 

which together with the continuity of S~'P(x, y) imply the existence of the derivatives 
in the classical sense. This completes the proof. 

In addition to Sx we consider an operator valued function T~ of the form: 

(4.14) Tz = SzGz 

where for each complex 4 not on the non-negative axis G~ is a bounded linear 
operator in L2(R") such that range (G~) and range (G*) are contained in H,,(R") 

(4.13) 

and such that: 

(4.15) 

c some constant. 

C 

for 141 ~ 1, 

THEOREM 4.2. Suppose that m > n and mj > I. Then T~ is an integral operator 
with a continuous bounded kernel Tz(x,y), possessing continuous bounded 
x-derivatives up to the order m -  n -  1, such that 

(4.16) I T~(x,y)l =< ce'Co 14[('+'):m d(4)J+l for 141 >= 1, 
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where c is the constant in (4.15) and C O is a constant having the same dependence 
as in (4.12). 

Proof. Since $4 is also a bounded linear operator: H ,  ~ H ,  it follows from 
(4.14) and the properties of G~ that range (T~)and range (T*)are contained in 
Hm(R"). Hence, since m > n, it follows from Theorem 2.1 that Tx is an integral 
operator with a continuous and bounded kernel T~(x, y). Now, using (4.14), (4.10) 
and (4.15) we have: 

llT~llo < [Is~llo" IlG~llo<(3w)'c I~1" c = = d(,~)) " d ( ~ )  
(4 .17)  

= c(3~)JC d(2)J+~ " 

11 z*l l .  <-- I1 o~'ll.. II s:' Iio __<c I'~a-~3-1) • (3w)Jc I&l'/'d(~y 
(4.17)' 

I~11÷,/- 
= c(3~)JC d(,~)J+l 

Also, since for every f ~  L2(R"): 

lira 

II ~f l l .  = II S~G~JI[. <= (3~¢ c 

(using (4.10) for t = s = m) we have: 
l+t/m 

(4.17)" ilz~l[ <(3r)~c t~1"" J , , = ~-~11 G~II.__< c(3r) c ~  

Combining now (4.17), (4.17)' and (4.17)" with the inequality (2.2) applied to the 
kernel Tx(x, y) we arrive at the estimate (4.16). Finally the proof of the differenti- 
ability of the kernel Tx(x, y) is very much the same as the proof of the differenti- 
ability of the kernel Sx(x,y) given above. We omit the details. 

5. Some properties of commutators. In this section we shall prove some 
results for multiple commutators of operators which wiLl be needed later on. 
Although the case of interest to us is that of differential operators we shall start 
by considering a more general situation. Let M be a linear space over a field 
K and let A, B: M ~ M be linear operators. Denote by S(r, t) the set of r-vectors 
J = (Ja, "",J,) with integral components 0 <j~ = t, i = 1, . . . ,r.  (The elements of 
S(r,t) are multi-indices in R"; to avoid confusion we use here Latin and not 
Greek letters). Set [ J] = Jl + " "  + J,, S(r) = I,.J~°=1S(r, t) and denote by 
J u (Jr+ 1) (J ~ S(r)) the vector ( j , . . . , j , ,  j,+ 1) ~ S(r+  1). Define a zero dimensional 
vector (belonging to S(o, t)) to be the empty vector. For the empty vector J -- 121 
set: I j I  = 0 and JZ U(jl) =(Jl)" 
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We shall now define inductively multiple commutators [B, A; Y], Y non-empty, 
in the following way: 

(5.1) 

(5.2) 

(5.3) 

[B, A; (0)] = B 

[B,A; (j + 1)] = [B,A; (j)]A - A[B,A; (j)] 

[B,A; J k)(J,+ 0]  = [BIB, A; J], A; (J,+l)] 

(Note that [B,A;(1)] = B A - A B  is the usual commutator of B and A). 
Let 2 e K  be such that A - 2 = A - M  is one-one and onto, and set 

F~ = (A - 2)-1. 

THEOREM 5.1. Let r and k be positive integers. Then 

(5.4) 
(F~B)" = x [B,A;J] e~,l+, 

J e S ( r , k - 1 )  

r - 1  

+ ~, (F~B)SFa ~, 
s=O J e S ( r - s -  l , k - 1 )  

[B,A; J U (k)]F Ix sl+k+'-'-t 

Proof. We shall proceed inductively in several steps. Consider first the case 
r = k = 1. Formula (5.4) reduces then to 

(5.5) FaB = BFa + Fa(BA - AB)Fx 

which is immediately verified by applying A - 2 on both sides of (5.5) from the 
left. 

Suppose that (5.4) has been established already for r = 1 and some k, i.e., 
suppose that 

k - I  
(5.6) FxB = )2 [B,A;(j)]Fz j+~ + F~[B,A;(k)]F~ 

j = 0  

is true. Using (5.5) with [B,A; (k)] replacing B we find that 

(5.7) Fain, A; (k)] = [B,A; (k)]e~ + Fx([B,A; (k)]A - A[B,A; (k)])Va 

= [B,A; (k)]Fa + F~[B,A; (k + 1)]Fx . 

Inserting (5.7) in (5.6) we see that 

k-I 

F~B= Z 
j=O 

[B,A; (j)]F/+I+ [B,A; (k)]F~+ t+ F~[B,A; (k + I)]F~ +' 

k 

Z 
j=0 

[B, A; (j)]F/+'+ F~[B, A; (k + O]F? +I 

Thus (5.4) is proved for r = 1. Assume now that the theorem has been proved 
for some r. Then 
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(FxB) "+' = FxB(FaB)" ..~ FaB Z [B,A; J]Fa [#l+' 
(5.8) ' + s(,,k- 1) 

r - - I  

+ X (FxB)S+IFa Z [B ,A;JU(k ) ]FY  I+k+'-'-l" 
s=O J e  S ( r - s - l , k - 1 )  

According to (5.6) with B replaced by B[B,A; J] we may write the first sum in 
(5.8) in the form 

X [B,A; s]F m+, 
d ¢ S ( r , k -  1 ) 

k - 1  

= ~, ]E [B[B,A;J],A;(,j)'JFxl Jl+'+l+l 
1 = 0  d e S ( r , k - 1 )  

+ ~, F~[B[B,A; J],A; (k)]Fy I+'+k" 
d ~ S i r , k -  1 ) 

According to (5.3) this is equal to 

]E [B,A; J]Fa Isl+'+ l 
J e  S(r+ 1 , k -  1) 

+ ~Z Fa[B,A; S k) (k)]Fa I'q +'+~ 
l e S ( r , k - 1 )  

Inserting this in (5.8) we get 

(FaB) "+1 = ~2 [B,A; J ] F y  I+'+1 
J e S ( r +  I , k - I }  

(5.9) + )2 Va[B,A;SW(k)]fx I'l+~+" 
J e $ ( r , / -  1) 

r - -1 

+ )2 (FxB)~+IFx X [B,A;SU(k)]Va l$l+k+'-s-I 
s=O / e  S(r-- s-- 1,k-- 1) 

= Z [B,A; J]Fa lsl+'+l 
S ~ S ( r + l , k - 1 )  

+ (E (FaB)~Fa X [B,A;JU(k)]F~. I'q+k+'-~ 
z=O g e s ( r - s , k - 1 )  

But (5.9) is (5.4) with r + 1 instead of r, so that the theorem is proved. 
Assume now that there exists a subring ~ of the ring of linear transformations 

from M to M and a function o from ~ to the real line so that the following con- 
ditions hold: 
(5.10) o(0) = -- oo 

(5.11) o(AB) < o(A) + o(B) 

(5.12) o(AB - BA) < o(A) + o(B) - 1 

(5.13) o(0 = o 

o(A) is called the order of A. 
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Lr~U_A 5.1. 

(5.14) 

Proof. 

(5.15) 

Let J ~ S(r), r > O. Then 

o[B,A; J] < [dlo(A) + to(B) - [ J I  • 

If r = 1 then (5.14) reads: 

o([B,,4;(j)]) < j o(A) + o(B) - j  . 

When j = 0, (5.15) follows from (5.1). Assume that (5.15) has been proved for 
a certain j .  Using (5.2), (5.12), and the induction hypothesis, we find that 

o([B,A;(j  + 1)]) = o([B,A;(j)]A - A[B,A;( j )])  < o([B,A;(j)])+o(A) - 1 

< j o(A) + o(B) - j  + o(A) - 1 

= ( j  + 1 ) o ( a )  + o ( e )  - ( j  + 1) 

which proves the theorem in the case r = 1. Assuming that the theorem has been 
proved for a certain r ,  we get from (5.3), (5.11) and (5.15) that 

o([B,A ; J k3 (j,+ t)]) = o([B,A ; J] ,A ; (j,+ I)] ) < jr+ xo( A) + o( B[B,A ; J]) - J,+ l 

< jr+~o(A) + o(e) + o ( [ B , a ; J ] ) - J r + t  

<= L+loCa) + o(B) + ISlo(h) + roCB)- Is[--Jr+l 

= I J k) (j,+ a)[ o(a) + (r + 1) o(B) - I J L) (Jr+ 2) 1 

and thus the theorem is proved for every r .  
LEMMA 5.1 will be applied in the sequel to the case where M is the linear 

space Hoo(R") and ~ is the ring of differential operators with C ,  coefficients. 
In this case we denote by o(A) the usual order of the differential operator A. We 
conclude this section by establishing for commutators of differential operators 
a result which we shall need later on. In this connection let us agree to say that 
a C ~° function u(x) has a zero of type p at a point x o (p > 0 an integer) if u and 
all its derivatives up to the order p - 1 vanish at x 0 . 

TrmOREM 5.2. Let [B,A; J] be a multiple commutator of two differential 
operators B, A (J =J(1, '",Jr)).  Suppose that the coefficients of the principal 
part of B possess a zero of type p >  IJ l / r  at some point x ° ~ R  ". Put 
N j  = ISl(o(A) - 1) + ro(B) (so that o([B,A,;J]) < Nz by (5.14)) and write: 

(5.16) [B,A; d] = ]E b,,s(x)D ~. 
I~I<-NJ 

Then each coefficient b,,j for N j  - r + I Sl/p < <= Nj  has a zero of type 
( r + l ~ l - N s )  p -  I J} at x °. 

Proof. For the purpose of the proof it is convenient to agree that for any 
integer q < 0 the statement: "u(x) has at a point x o a zero of type q" is a true 
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statement which holds in the emptly sense. With this convention we have to prove 
that each coefficient b~,j has a zero of type (r + I~1- N,)p -IJI at x °. We shall 
prove this using a double induction on J. We shall first show that if the theorem 
is true for J = (j~,--.,j,) then it is also true for J '  = (Jl, " " ,L -  t, J, + 1). Indeed, 
let A = ~a,,D ~. By definition, using (5 .1 ) -  (5.3): 

~., b~,.t.(x)n'=[B,h;J'] = [ B , A ; J ] A - A [ B , A ; J ]  

(5.17) = E ~ [bp.fl~, a,O';(1)] .  
I#I~NJ [rl-<oeA> 

From (5.17) it is clear that the coefficient b~,:, is a linear combination of terms 
of the form: 

(5.18) bp..rDP'ar or arDr'bp,.t 

with IBI + 1~1-1 ___ I~1 where fl' is a multi-index such that f l =  fl' + fl" and 
= f l " +  V, fl" some complementary multi-index, and similarly V' is a multi- 

index such that ? = ?' + ?", ~ = fl + ?" for some V". Note that these restrictions 
imply that l~'l----1, If'l=> 1 and that (in the last case): 

1,81--I '~1- I~'"l = I~'1 + I~"1-  I~'1. 
To prove the theorem for J '  it will suffice to show that each of the terms (5.18) 

has at x ° a zero of type (r + 1~ ] - N.~.)p - I J'l. Now by the induction assumption 
the coefficient bp.j has at x ° a zero of type (r + I~1 - N~)p- I JI. Hence, since 

IPl_>l~l+ 1-1~1__>1~1+ 1 - o ( A )  and N j , = N I + o ( A ) - I ,  I J ' l - - I J l+  1, 
we find that a term bp,:DP'a~ has at x ° a zero of type: 

(r + 1 ~ 1 -  N~)p -IJl _>_ (r + I=1 + ~ - o(A) - N , ) p - I J I  

>( , .  + l~,l - N , . ) p -  I J ' l  . 

Similarly, since I~1 = I~1 + I~ '1 -  I~1 >--I~1 + I r ' l -  o(A) and Ir'l--- 1, we 
find that the term arD~'ba,: has at x ° a zero of type: 

(r+ iPI-N,)p- IJ[- IW'I 

= ( r +  I~1 + 

= (r + I~1 + 

_~ (r + I~1 - 

[ ? ' l - o ( A ) -  N z ) p - I J I -  IT'] 
1 - o ( A )  - N , ) p  - ([JI + 1) + (p - 1)(I r' [ - 1) 

N ~ , ) p - l J '  I. 

These computations show that the theorem holds for J '  as claimed. 
We shall complete the proof by induction on r. Suppose first that r = 1. By 

the result just proved in order to establish the theorem for d = (Jl) it suffices to 
show that the theorem holds for J =(0).  This, however, is trivial since 
[B, A; (0)] -- B and one checks readily that the statement of the theorem in this 
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case reduces to our assumption on the coefficients of B. Hence the theorem holds 
or r = 1. Next assume that the theorem holds for some r. We shall show that it 

holds for r + 1. Using again the result established above it will suffice to prove the 
theorem for jo  = j u (0) where J = (j~, ...,j,). Now, letting B = ]E b~D ~, we have: 

b~,zoO ~ = [B,A; jo]  = BIB, A; J] 
(5.19) 

= ~E ]~ bpDP(b~,~D~). 

From (5.19) it follows that b~,zo is a linear combination of terms of the type: 

(5.20) b~OP'b~,j 
with 181 --- o(B), I~1 =< N~ and where 8'  is a multi-index such that 8 = 8'  + 8", 
8" + ~' = ~ for a certain complementary multi-index 8". Note in particular that 
these relations imply: lel =1~1 + 18'1-181. Consider a typical term (5.20) 
and assume first that 181 =< o(8)-  1. Using the induction assumption together 
with the estimate [~'l > I ~ I + 18'1 - o(B) + 1, we find that DB'br,z has at x ° a 
zero of type: 

(r + I~1- N , ) p - I J I -  18'1-- (r + I~1 + 18'1- 0(8) + 1 - N , ) p - l J [ - 1 8 '  [ 

=( r  + 1 + I = l -  NjO)p_ Ijol + (p _ 1)18'1->-- (r + 1 + I ~ l -  N,O)p-IJol ,  

(using also that N,o = Nj + o(B) and ]do ] = ] j  ]). 
Next suppose that 181 -- m. In this case bp has a zero of type p at x °. Using 

this, the induction assumption and the estimate: lel~l~l + 18'1-oW), it 
follows that baDP'b~,j has at x ° a zero of type: 

p + (r + [ Y l -  N j ) p - [ J [ -  18'[ 

(1 + r + I~I + Is'I - o W ) -  N j ) p -  IJI -18 '  

~_ (r + 1 + I~1-  N ,o )p - I so l .  
The above computations show that b, zo has at x o a zero of type 

(r + 1 + 1o~ I - N,o)p --IJOl, 

which is the desired result for r + 1. This completes the proof. 

6. The asymptotic expansion of resolvent kernels. We shall first discuss a class 
of operators on R". Let A(x,D) be a positive elliptic differential operator on R n, 
p-formally self-adjoint and of order m > n. We assume that the coefficients of A 
are in C,(R') ,  that p ~ C,(R' )  and that p(x) > ~ > o, ~ some constant. We also 
assume that A is uniformly elliptic: A'(x, ¢) > C I ~ I "for x and ~ in R', C a positive 
constant. Considering A as a symmetric operator in the Hilbert space L2,p(R") 
with domain C~°(R ~) we denote its closure by .~. It is well known: that X is a 
self-adjoint operator with domain of definition H,,(R~). Moreover, ~ is the unique 
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self-adjoint realization of A in L2.p(Rn). All these facts follow easily from the 
a-priori estimate: 

II u Ilm < Const. ([I An 110 + l[ u H o) 

which holds for u ~ Hm(R n) and from the regularity theory of weak solutions 
elliptic equations (e.g. [1]). In addition it follows from G~rding's inequality that 
Xis bounded from below. In the following we shall assume without loss of general- 
ity that , t  is positive. 

Consider now the resolvent operator Ra = (.4 - 2)-1. From our previous dis- 
cussion it follows that Rx is an integral operator in L2,p(R*)with continuous 
and bounded kernel Rz(x,y). Since L2.,(R") and L2(R*) are the same function 
spaces on which two equivalent Hilbert norms are defined, we may consider 
,,~ and Rx as operators in Lz(R,,). We shall denote by Gx the resolvent operator 
Rx when considered as an operator in L2(R~). It is an integral operator with a 
kernel: Gx(x, y) = Rx(x, y)p(y). The operator Gx: L2 ~ L2 can also be considered 
as an operator: L2 ~ Hm. We have the following norm estimates: 

141 
(6.1) IlGxllo <= cd(~)-l '  IlG;tllm<C d(2)' 

II Gx* lira < C ~ for I~1 => 1, 

c a constant, where as before d(,~) denotes the distance of 2 from the positive axis. 
Indeed the first inequality is immediate since X is a positive operator in Lz,p(R"). 
To derive the second inequality write Gx in the form: Gx = G-1 Ux where 
Ua = ( , ~ +  1)(( .~-2)-1.  Clearly U~. is a bounded operator in L2 whose norm 
when considered as an operator: L2,p-~ L2.o does not exceed 

sup It ÷ 11 141 + 1 [ 2 [  for > 1. 
- oo<,< ~o I t - A[ --- 1 + d(A---'~ <-- 3 d ( 2 )  = 

Hence: 

II II- 11 G-1 II-I1 IIo I d@ 
The last estimate in (6.1) follows of course from the second noting that 
G~* = pG~p- 1 

We proceed now to derive the asymptotic expansion of G~(x,y). To 
this end we fix an arbitrary point x ° in f~ and set: Ao(D)=A'(x° ,D) ,  
B(x, D) = A ' (x  o, D) - A(x, D). As in section 4 we denote by X o the unique self- 
adjoint realization of Ao in L2(R n) and by Fa the resolvent of Ao, Fa = (¢]o - 2)- 1. 
Let f eL2(R n) and set u = Gff. We have: 

(A o - $)u = (A - 2)u + Bu = f +  Bu, 
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so that 

or equivalently 

Hence 

u = F~I + F~Bu, 

(6.2) G~ = Fa + F~BGa = F:~ + F~BFx + (F~B)2G~ . . . . .  

1-1 

= Y., (FaB)'F~ + (F~B)zG~ 
r = 0  

for every integer l > 1. 
Considering Ao, B and F~ as linear operators: H®-~ H~ (note that A o -  2 

is one-to -one from H ~o onto itself) we apply Theorem 5.1 to (FaB) ~. After completion 
in L2(R* ) it follows from (5.4) and from (6.2) that 

l - 1  

Ga=F ~ + Z Z [B, Ao;J]F~ Isl+'+l 
r = l  d~S(r,k-1) 

! - 1  r - 1  

(6.3) + ~, ~, (F~B)SF~ ~, 
r = l  s = 0  J a S ( r - s - l , k - 1 )  

+ (F~B)1G~, 

where k is an arbitrary positive integer. 

[B, Ao; J u (k)]F~lJI +*+,- 

According to Lemma 5.1 the order of the differential operator [B, A o ; J ]  for 
J ~ S(r) is at most: [ J I (m - 1) + ro(B). If A' has constant coefficients o(B) < m - 1 
and o([B, Ao; J])  < (IJI ÷ r)(m- 1). In the general! case: o([B, Ao; J])  
< ( [J l  + r) (m - 1) + r. Consider the right hand side of (6.3). Clearly Fx is an 
integral operator with a continuous and bounded kernel F~(x, y )=  F , ( x -  y, 0). 
Using the results of section 4 and our estimate on the order of [B, A o; J ]  it follows 
that every term [B, Ao; J]Fx Isl+'+l which appears in the first sum in (6.3) is 
an integral operator with a continuous and bounded kernel 

([8,A; S J t Y l  ÷'÷ ~)(x, y). 

Set: 

H t '  (x, y) = G~(x, y) - F~(x, y) (6.4) k, 

1 - t  

-- ~2 ~ ([B, ao ;  J ] F y  I+'+1) (x,y). 
r = l  J~S(r,k-1) 

Then H~'l(x,y) is the kernel of the operator given by the sum of the two last 
members of  (6.3). 
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Our object is to estimate H~J(x, y). To this end consider first the operator 

given by the one before last membcr of (6.3). It is a sum of operators: 

(6.5) (FaB)~Fx[B, Ao; J U (k)]Fa IJI +k+,- ~ 

with 1 < r < l - 1, 0 < s < r - 1. J e S ( r  - s - 1, k - 1). According to Theorem 
4.1 the operator (6.5) is an integral operator with a continuous and bounded 
kernel such that (since o([B, Ao; J U (k)] < (IJI  + k) (m - 1) + (r - s) oW)): 

(6.6) I ( ( F a B ) ' G [ K A ° ;  J U ( k ) ] f y  I+k+'-~) (x,y) I 

z c d~y f ~(g 

for t21 >- 1. Here and in the following C denotes a generic constant which is 
independent of 2 ,x ,y  and x o (C depends however on k and /). 

In particular it follows from (6.6) that when o ( B ) <  m: 

(6.7) I((FxB)'Fx[B, A0; J u (k)]F~ I'I +~ +'- ') (x, Y) I 

< t i l l  ",- (1~11-,-) '+' 
= - a(~) d(~) 

for d(~) >-I~I '-'/', 121--- I. 
If o(B) = m it follows from (6.6) that if k >= I + (I - 1)/em for some fixed 

8 > 0, then: 

(6.7)' I((eaB)'Fa[n, Ao; J u (k)]f~ IJl+k+'-~) (x,y) I 

c I~1"" [ l ~ l l - " ~  ' _<_ 
- d(~)'\ ~ ! 

for a(,~)> 1.~1 ' - ' + ' ,  1,~1 > 1. 
Consider now the last member of (6.3). Since G~ verifies (6.1) it follows from 

Theorem 4.2 that (FxB)'Gx is an integral operator with a continuous and bounded 
kernel such that 

I~1"". [l~l°'B)l') ', l a l> l .  (6.8) I((FaB)'G~) (x,y) l < c - ~  x d-~ - 

Suppose that o ( B ) <  m. From (6.8). (6.7), (6.3) and (6.4) we obtain for H~ J 
the following estimate when k ~ l -  1: 

n~ (x,y) < c d(~) ~, d-~ '1 (6.9) k" 121n:"/12l ' - l ' "  ~ ' 

for d(~)=> I~1'-"', I~! >1. 
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When o(B) = m the estimate (6.8) does not give us the information we look for. 
In this case, however, we shall show that (6.8) can be replaced by a better estimate 
if x is restricted to a small neighborhood of x ° which depends on 2. To this end 
apply formula (5.4) to (F~B) l and write (F~B)ZGa in the form: 

(FxB)lGa = ]E [B, A o; J].Fa I'rl +tG~ 
(6.10) J ~ sO,a- 1 ) 

! - 1  

+ ~, (F~B)'F~ Z [B, Ao;JU(q)]Fl'q+'+t-S-'G~, 
s = 0  JeS ( l - s -  l , q -1 )  

where q > 1 is an integer to be fixed later on. Consider a typical term in the first 
sum on the right hand side of (6.10). According to Theorem 4.2 [B,Ao;J]FI~ ~1 +lG,~ 
is an integral operator with a continuous and bounded kernel 

([B, Ao; J ] r2  ~1 + % )  (x, y). 
Write: 

(6.11) [B, A o ;J ]=  ~, b~,.~(x;x°)D~, JeS(1), 
I~t~_ NJ 

where Nj  = I JI (m - 1) + l m  (note that the b~.z are C~ functions in x and xO). 
By our definition of B it is clear that the coefficients of its principal part B' vanish 
at x o. We shall denote by p = p(x °) the largest integer > 1 such that all the coef- 
ficients of B' possess a zero of type p at x o. If no such largest integer exists, i.e. if 
all the coefficients of B' possess a zero of infinite order at x o, we let p = + oo. 
We set: 

(6.12) O=O(x°)= P ( 2 < 0 <  1) 
p + l  = ' 

and 
M j = M ~ ( x O ) = m i n { N . r , N ~ - l +  IJ[}p, J~S(l).  

By Theorem 5.2 the coefficients b,,,r in (6.11) vanish at x = x  ° for I~1 > M j .  
Observe that 

1 p ( 
Mj < ~  Nj + N j - I  + 

(6.12)' - p + 1 p--+--I 

= ( I J l + l ) ( m - 1 ) + l  P 
p + l  

IJI)p 
1 

- ~ l -t- ~ I J l - ( I J l  + 1) (m-O). 

We proceed now to estimate the kernel: 

(6.13) ([B, Ao; J]Fxl'q+tGx) (x,y) = 

with J e S ( l , q -  1). Consider first a term in the last sum with 

b,,~(x, xO) (D'tr y t  + z a~) (x, y) 

Is] =< M j  ~ ( I J I  + l) ( m -  0) 
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(by (6.12)'). Applying Theorem 4.2 to the operator D~FxlJI+kG z it follows from 
(4.16) that 

, < cl'~l", m I'~1 '~"" 
Ib~s(D'FyI+tGz)(x 'Y)]  = d(2) " d(;t) ul+t 

( 6 . 1 4 )  

= d(2) d(2) = d(2) d(2) 

for d(2) => [2 [1-0/m, [21 _-__ 1. Next, if Ms < Ns, consider a term in the sum (6.13) 
with Ict [ > Ms. By Theorem 5.2 the coefficient b~, s (as a function of x) has at x ° a 
zero of type ( [~ t [ -Ms)p .  Restrict x to a neighborhood: 

(6.15) I x - x ° l ~ l ; ~ l  - ' : , '"  

where we set 

(6.15)' p '  = p'(x  o) = rain{p, Q}, 

Q being an arbitrary but fixed integer > 1 (independent of xO). Clearly for such x: 

(6.16) I b,,,s I =< c l ,~ l  ( ' . ' - ' ' ' ) ' '  . 

Apply now Theorem 4.2 to the operator D~FxlSl+tG~. It follows from (4.16),(6.16) 
and (6.12)' that 

[ b~,,,,(O"F,JJ'+'e,O (x,y)] < q , ~ l ( " - ' ~ ' ) "  l'~l{"+''~>/" 
- d(~.)u, +~+i 

(6.17) [./~ ̂.[n/m (.[~[1-Olm)IS[+, I,~[n/m ([~,[l-,/m)1 
< C a ( t )  • < C  • = ~ d(2) = ~ ( 2 )  ~ ' ~  

for d(,~) ~ I.~1 '-°/'', I'~1 > 1. Combining (6.13), (6.14) and (6.17) we conclude 
that 

(6.18) I([B, Ao;J]F~S'+'OD(x,Y)I<c I'~ I':m [1'~1'-°/" ) ' = d(2) ( d-(~ 

for d(2)>_-I~l '-°'m, z => 1 and x satisfying (6.15). 
Apply now Theorem 4.2 to the operator: 

(6.19) (F~B)'F~[B, Ao; S L) (q)]F;t Ist +q+'- ' -  1G,t , 

with J e S(l - s - 1, q - 1), s < l - 1. Since 

o ( [ B ,  A o ;  J O (q)] _-_ (I J[ + q) (m - 1) + m ( l  - s) ,  

it follows from Theorem 4.2 that (6.19) is an integral operator with a continuous 
and bounded kernel satisfying: 
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(6.20) 
I((F~B)'Fa[B, Ao; J U (q)]Fa IJI +q+'-s- 1G,) (x, y) [ 

121":" [1211-':') I~l+~+' ]2l>1.= 

For any given 6 > o we choose now q in (6.20) as the smallest integer q > 1~me. 
With this choice we have: 

(6.20)' [((F~B)'FxrB'A°;J U(q)]FzlJl+~+t-S-lG~)(x'Y)l 

< c 121°" •-''  - [121'-"m~ ' 
= d(~) ~, d(2) l 

fo, d(2)___ 121 '- ':-+',  121_->1. 
Combining now (6.10), (6.18) and (6.20)' we find that 

12l./m (121,-0, - )' 
(6.21) I((&B)'G*) (x'Y)l < C d--d(-~- \ d-~ 

for d(2)_ max{121 ' - ° ' ,  121'-"'+'}, 121->- 1, and x verifying (6.15). Finally, 
from (6.3), (6.4), (6.7)' and (6.21) we find that when o(B)= m the kernel 
H~ '~ for k > l + (l - 1)~sin verifies the estimate: 

I r,-(l l °,-) , 
(6.22) In~*"(x'y)l < c d-d~" d(2) 

for d(2) > max{121'-'% 121'- ' ,-+'}, 121 _>- 1, and x satisfying (6.15). 
Summing up we have proved the following result. 

THEOREM 6.1. The kernel Ga(x,y) of the resolvent R x = ( ~ -  4) -1 (considered 
as an operator in L2(Rn)) has an asymptotic representation of the form: 

(6.23) 

I 

Gx(x,y)=Fa(x,Y) + ~, ~, ( [ A o - A ,  Ao;J]FlSl+'+l)(x,y) 
r = l  J~S(r,k) 

\d(2) " d(2) ) 

with A o = A'(x°,D)(x ° a fixed point), F~=( ,4  o - 2 )  - I ,  such that: 
(i) I f  A' has constant coefficients then 0 = 1, k and 1 any integers with 
k > l - 1 > 0; the 0 estimate holds for 2-~ oo in the region 

d(2)_>_121 c'-'~:', 121___ 1, 
uniformly in x, y and x °. 
(ii) I f  A' has variable coefficients then 0 is given by (6.12), k and l any positive 
integers with k/ l  > 1 + (era) -x for any given e > 0; the 0 estimate holds for 
2 ~ oo in the region: d(2)>>_max{12l '-<°/m', 1211+.-.,-,1, 121 _-> 1, for any y 
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but x restricted to the neighborhood (6.15) of x o. Under these restrictions the 0 
estimate is uniform in x , y  and x o. 

The asymptotic representation formula of  Ga(x,y) takes a particularly simple 
form on the diagonal of R" x R". As a matter of fact in this case (6.23) can be 
replaced by an asymptotic series expansion in powers of ( - 2)-1/~. To see this 
take in (6.23) x = y = x °. From (4.7) it follows that 

(6.24) ( - 2)1-"/:([Ao - A, Ao; tifF IJl+r+ l ) (Xo, Xo) 

is a polynomial in ( -  2) -1/m with coefficients which are C ,  functions in x °. 
It is easy to check (using Theorem 5.2) that the constant term in this polynomial 
is zero. Also, F~(x°,x °) = go(x °) ( - 2) -l+t"/m) with 

(6.25) go(X) = (2r0-"fR" [A'(x, 4) + 1]- td~. 

These observations and Theorem 6.1 show that on the diagonal the kernel Ga 
has the asymptotic series expansion: 

(6.26) G~(x°,x °) ,'0 ( - 2) "/m-1 ~, gj(x °) ( - 2) -i/m 
j=O 

with coefficients gj which are C ,  functions in x o (gj for j > 0 is the sum of the 
coefficients of ( -  2) -j/m in the polynomials (6.24) taken over all J eS(r ,k ) ,  
r = 1,..-, l where l is chosen large enough so that (l + 1)0 > mj). The asymptotic 
expansion (6.26) holds in the usual sense for ;t ~ oo in the region: 

d(a)_> lal , 141____1, 

if A' has constant coefficients, and for ~ ~ oo in the region 

nxl 141 _-_ 1, 
in the general case. Here ~ is an arbitrary fixed positive number. The asymptotic 
expansion in the regions mentioned is uniform in x % R " .  

Recall that the standard resolvent kernel of  X is the kernel 

Rz(x, Y) = p(y)-lGz(x, y) 

(the kernel with respect to the measure dpy = p(y)dy). The asymptotic expansion 
which we have derived for R~(x, x) (via (6.26)) is precisely the asymptotic expansion 
(3.2) o f  Theorem 3.1. Thus we have proved Theorem 3.1 for the class of  operators 

X in L2,p(R"). 
We now extend Theorem 6.1 to the case of  a self-adjoint realization of  an 

elliptic differential operator on f~ for any open set f~ c R". 

Tm~OREM 6.2. Let X be a positive self-adjoint operator in L2,o(~) which is 
the realization of  a p-formally self-adjoint (positive) elliptic operator A(x,D) 
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of order m > n (p and the coefficients of A belong to C®(f~)). Let Rx(x, y) be the 
resolvent kernel of.4. Then the conclusion of  Theorem 6.1 holds for the kernel 
Gx(x,y) = p(y)Ra(x,y) with the modification that the statements on the uniform 
dependence of the 0 estimate in (6.23) hold for x, y and x ° restricted to any 
compact subset of fL 

As above Theorem 6.2 yields for Gx(x °, x °) the asymptotic series expansion (6.26) 
valid for 2--* oo in the region: d(2)> Ixl ~-,,-,÷',  I~1 = 1, if a '  has constant 
coefficients, and in the region: d(2)~121 ~-(°/m'+', I~1----1, in the general case 
(the expansion being uniform in x o in every compact subset of f~). Now, the 
existence of such an expansion is precisely the statement of Theorem 3.1. Thus 
we see that Theorem 6.2 implies Theorem 3.1 as a special case. 

For the proof of Theorem 6.2 we shall need the following: 

L ~  6.1. For every complex 2 which is not on the non-negative axis, let Tx 
be a bounded linear operator in L2(f~ ) such that its range and the range of its 
adjoint T 'are  contained in H~C'(f~), m > n. By Theorem 2.1 bis. Ta is an integral 
operator with a continuous kernel Ka(x,y). Suppose that 

c 
(6 .27 )  [I T II d(X)' c a constant. 

Suppose moreover that there exist posilive elliptic differential operators A(x,D) 
and Ax(x,D) (C ° coefficients) of order m such that 

(6.28) (A(x,D) - 2)Taf= 0 and (Ax(x,D) - 2)T*f = 0 

for all f ~ L2(f~), Then for every integer j >=0 and every f~o c c f~ (i.e. f~o open, 
~o compact and ~o c f~), the following estimate holds: 

where C is a constant independent of 2. 

Proof. It will suffice to prove (6.29) for f~o with a smooth boundary. We 
first prove that for t) o c c fl and j = 0,1, 2,... : 

(6.30) 
)'11 c Silo., II T, Sllo..o <-- 

llT~Sll...o~ c I~l (1~1'-"')' - l lS l to ,o  

for allfE Lz(fl). Here and in the following C, C1,.-., denote constants independent 
of ~ orS. Indeed, write u = Tar and note that by assumption: Au = 2u. Using well 
known a-priori estimates for solutions of elliptic equations we have: 
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II u II.,.o-~ c,(ll Au IIo,. + II u Iio°) (6.31) 
i . I 

= cx(t21 + x)Ilu tlo.° s c ~  ]t/Ho,. 

for [2[ ~ 1, by (6.27). (6.31) together with (6.27) yield (6.30) fo r j  -- 0. We continue 
by induction. Suppose that (6.30) was proved for j we shall prove it for j + 1, 
To this end observe that our assumption that A is a positively elliptic operator 
implies that A can be written in the form: A = A o + B where B is an operator 
of  order < m - 1 and A ° is a formally self-adjoint operator such that 

(6.32) II° Iio,, ~ 42)-'11 ( A° - 2)0 llo,° 

for all v e Hm(fl) with compact support in ta. Now, given tao choose tax with a 
smooth boundary such that tao'= = tax = c ta. Pick (E C~(tal) such that (--- 1 on 
tao. Write as before u = T~f and apply (6.32) to v = (u. We have: 

(6.33) Ilullo,°o-llcullo,.-- d(2)-'ll (AO- 2)(¢u)11o.~ 
z d(2)-' l l(a- 2) (¢u) Iio,. + C2d(2)-ltlull.-,,., 
~_ c¢(2)-'11ulI.-,,.,, 

since (A - 2)u = 0. We now apply the well known interpolation inequality: 

(6.34) II u II.-x.°, <= r ll u o,., II u ' '  m,.,'-"" , 
y a constant. Using our induction assumption, it follows from (6.30) (applied 
to tal) and (6.34) that 

/12tt-1/m)J +1 
(6.35) II u II.-x,°,-<-- ~c~, ~-~ Ilfllo,o. 

Combining (6.33) and (6.35) we obtain the first inequality (6.30) for j + 1. To 
derive the second inequality we use again the interior a-priori estmates: 

(6.36) II u II-.~ =< c3(11 An Iio., + II" I1o °,) 
= c_.(121 + 1)11.11o,., =<2ql2111 r~fllo,.,, 121_-> x. 

Combining (6.36) with the first inequality (6.30) with j replaced by j + 1 (which 
we have just established for all tao c c ta) we obtain the second inequality (6.30) 
for j + 1. This completes the proof of (6.30). 

Let, now, ./o:L2(t ' l)~ L2(f~o) be the restriction operator from ta to tao (tao as 
above with a smooth boundary). Its adjoint ,/* : L2(tao)~ L2(ta) is an extension 
operator. We define: Tx,o = JoTxJ *. It is clear that Ta,o is a bounded operator 
in L2(tao) which verifies the conditions of Theorem 2.1 (its kernel is Kx(x, y) 
restricted to f~o x tao). From (6.30) it follows that 
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(6.37) il r~,ollo,no --< d(---)" - " 

- ]" 

Since T* is an operator with the same properties as Tx, the estimates (6.30) also 
hold for Tx*. Hence: 

(6.37)' 1[ T~*oHm,a o -< C d~2D" ~ )  ' ] '  

Applying now the inequality (2.2) to the kernel of Tz.o, using the norm estimates 
(6.37) and (6.37)' we obtain (6.29). This establishes the lemma. 

We conclude with the 

Proof of Theorem 6.2. Let f~o c c f/. Choose a real function p°(x) ~ C~°(R n) 
such that p°(x) = p(x) on t)o, p°(x) =>_ J > 0 on R n, and then choose a p°-formally 
self-adjoint uniformly elliptic operator A°(x,D) on R ~ with C ,  coefficients such 
that A ° coincides with the given elliptic operator A on fl o. (The proof that the 
extension A ° of A exists is standard). Let/T °be the unique self-adjoint realization 
of A ° in L2,po(R~). ~o is semi-bounded from below. Without loss of generality 
we shall assume that ~o is a positive operator as this may always be achieved by 
adding a large positive multiple of the identity to both operators A ° and A. Let 
R°(x, y) be the resolvent kernel of .~o and let G°(x, y) = p°(y)R°(x, y). We define 
operators S~ and S ° from L2(f~o) into L2(£~o) by: 

fe L2(flo). We set: 

Rx(x, y)f(y)dy, S°f = rue R~(x, y)f(y)dy, 

& -  s °. 

It is easily seen that T~ verifies the conditions of Lemma 6.1. Indeed, T~ is a bounded 
linear operator in L2(flo) with range in Hm(f~o). The same is true for its adjoint 
since T~* = Tx. That the estimate (6.27) holds is obvious from the relation of S~ 
and S ° to the resolvent operators of ,~ and Xo. For f ~  L2(fto) we have: 

( A  - ;~) T f f  = (A  - ;~) S f f  - (A  ° - 2) S ° f  = f f - -  O, p pO 

since A = A ° and p = pO on f~o. Similarly, ( A -  ~)T~f= O. Hence, applying 
I.emma 6.1 to the kernel of Ta we find that for every £/~ ~ ~ f~o and every integer 
j ~_ 0, the following estimate holds: 
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' 

(6.38) sup [ G~(x, y)  - G°(x,  y)[ < C ~ ~ d(2) ] ' [ 2[ ~ 1. 
fit xllt 

By Theo rem 6.1 the kernel G°(x, ,y)  has the asymptot ic  representat ion (6.23). 

Combin ing  this with (6.38) ( taking j = l + 1), it follows tha t  the asympto t i c  

fo rmula  (6.23) also holds for  the kernel  G~(x y). This proves  the theorem.  
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